

Dual Balloon Concept For Lifting Payloads From The Surface Of Venus

Viktor Kerzhanovich, Jeffery Hall, Andre Yavrouian and James Cutts, Jet Propulsion Laboratory, California Institute of Technology

Fourth International Planetary Probe Workshop

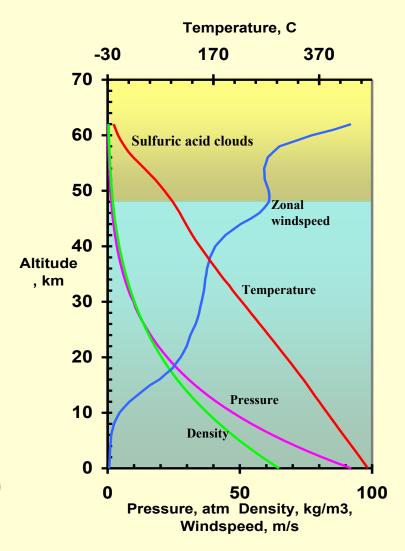
Pasadena, CA, USA

June 27-30, 2006

BACKGROUND

- Why Venus?
 - Detailed knowledge of environment and evolution of Venus is vital to prevent Earth to become Venus twin
 - Fundamental questions about surface and atmosphere composition unanswered
 - Global superrotation of the atmosphere is still enigma
- Last in situ mission was 20 years ago two VEGA probes and two balloons
- NASA/NRC guiding documents and Venus "White paper" named three highly-ranked missions requiring balloons

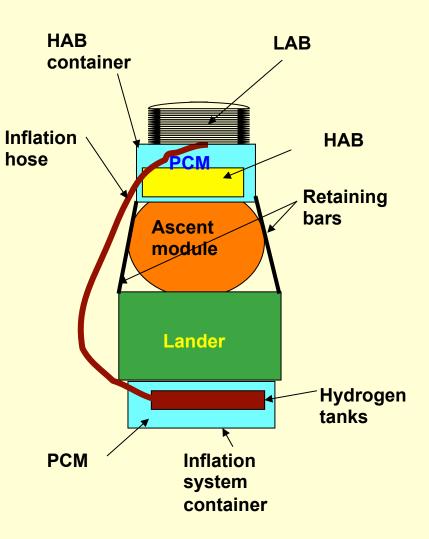
FUTURE VENUS MISSIONS NEED BALLOONS


- Venus In-Situ Explorer (VISE)
 - Probe to land on the surface
 - Surface sample acquisition
 - Balloon to lift 50-100 kg ascent module with sample and instruments at benign environment in the atmosphere (53-55 km) for detailed sample analysis
- Venus Surface Sample Return (VESSR)
 - Probe and return rocket (Venus Ascent Vehicle VAV) to land on the surface
 - Surface sample acquisition
 - Balloon to lift 500-600 kg VAV with sample canister upper atmosphere (58-65 km) for launch to Venus orbit and then to Earth
- Venus Atmospheric Dynamics Explorer
 - Tracking of multiple balloons at altitudes from near surface to 60-65 km
 - Tracking cloud motions from orbiter (Venus Express is doing now)

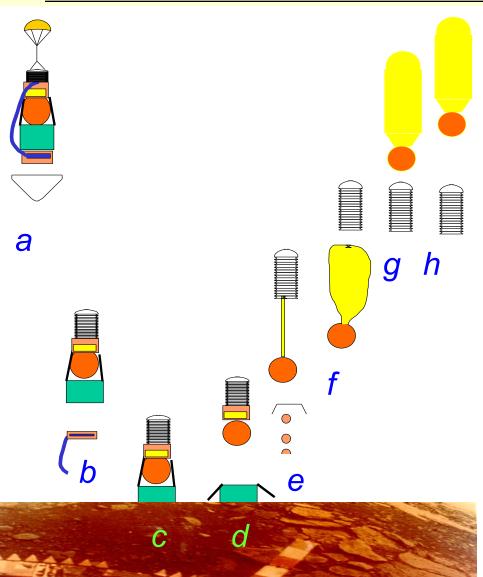
VENUS ENVIRONMENT AND BALLOONING

- Wide range of balloon-related parameters
 - Autoclave at the surface: temperature 463 C, pressure 92 bars, density 64 kg/m³, windspeed <1.5 m/s, clear atmosphere
 - Benign Los Angeles smog with category 5 hurricane winds at 55 km: temperature 30 C, pressure 0.53 bar, density 0.92 kg/m³, concentrated sulfuric acid haze, windspeed 70 m/s
 - Earth stratosphere above 67 km: temperatures <-40C, pressure <70 mbar, density <0.15 kg/m³

VENUS CARGOLIFTING BALLOON


- Main requirements
 - Tolerate 460 C surface temperature for several hours
 - Tolerate concentrated sulfuric acid at upper atmosphere for 1-24 hours
 - Lift payloads from 50 to 600 kg to ~ 60 km altitude (136 times balloon volume increase)
 - Packing in the aeroshell
 - Autonomous surface lunch
- Single balloon: no appropriate material so far
 - Teflon film melts at surface temperatures and highly permeable
 - PBO film
 - Does not tolerate sulfuric acid, need coating
 - Still in experimental phase, future unclear
 - Kapton FN film (Kapton co-extruded with Teflon)
 - Brittle above 400 C
 - Teflon sticky at high temperatures
 - Metal foils: no tear resistance, too fragile

DUAL-BALLOON APPROACH


- Divide balloon system in two parts optimized for low-altitude and highaltitude operations
- Low-altitude balloon LAB has small volume, expands <2.5 times and might be built of robust high-temperature material
- High-altitude balloon HAB operates at temperatures <350 C, expands >50 times and has to built of light-weight polymer film
- HAB kept at moderate temperatures inside thermally insulated enclosure until deployment
- LAB metal bellows

DUAL-BALLOON MISSION CONCEPT

a – h=140-2 km: entry, aeroshell separation, descent to low atmosphere; PCM thermal control of hydrogen tanks and HAB

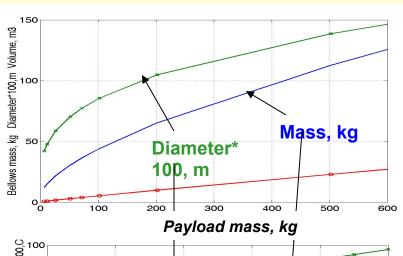
b - h~2 km: open valve to inflate LAB, release tanks, LAB filled to ~1/3 of volume

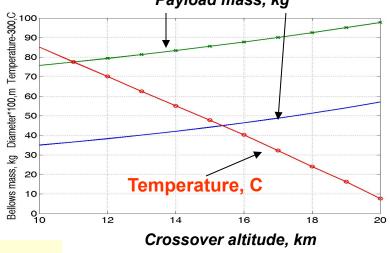
c – h=0 km: landing; LAB buoyancy stabilizes attitude and reduces velocity; surface sampling and sample transfer

d – h=0 km: release retaining bars, launch from surface, leave lander

e – h=10-20 km: crossover altitude, LAB expanded to maximum volume; HAB deployment, release HAB container, open valve between HAB and LAB; gas expanding from LAB begins to fill HAB

f – h=30-35 km: end of HAB inflation and LAB separation


 $g - h\sim 30\sim 60$ km: HAB ascent to cruise altitude h - h= 53-60 km HAB at cruise altitude, analyze sample, launch VAV



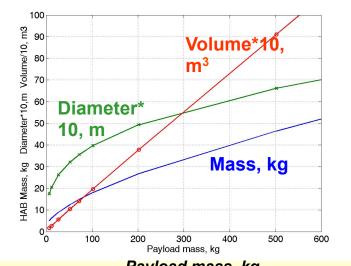
METAL BELLOWS AS LOW-ALTITUDE BALLOON

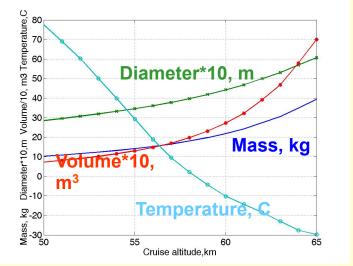
- Existing technology at Gardner Bellows Corp
- Tested bellows 0.35 m diameter 70 convolutions, stainless steel, 7-mil thickness
- Stored length 0.19 m, maximum expansion 2.16 m
- Passed +460 C test, no damages or leakage

Critical design factors

- Payload mass
- Crossover altitude

DP= 630 mB after exposure to +460 C


Need 0.8 m diameter 46 kg bellows to lift 100 kg payload to crossover altitude 15 km



HIGH-ALTITUDE BALLOON

- Material
 - Kapton FN film Kapton film coextruded with Teflon FEP
 - No degradation or brittleness below 400 C
 - Sulfuric acid tolerant (Teflon outside)
- Design
 - Zero-pressure
 - Cylinder with load tapes
- Deployment: aerial at crossover altitude
- Critical design factors
 - Payload mass
 - Ceiling altitude
 - Crossover altitude temperature

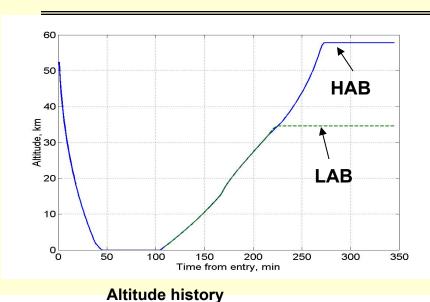
Payload mass, kg

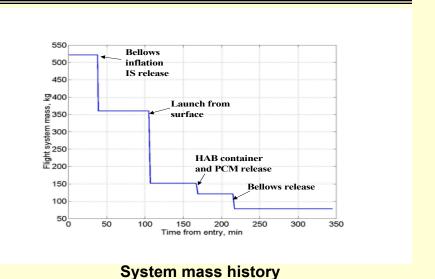
Crossover altitude, km

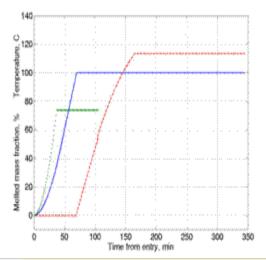
DUAL-BALLOON SYSTEM MODEL

- Model simulates the dual-balloon system trajectory and thermal state in all phases from beginning of descent to ascent to the cruise altitude; all system elements and all separations included
- Trajectory and thermal
 - Terminal velocity equation for vertical motion
 - Aerodynamic drag, gravity and buoyancy forces
 - Horizontal velocity equal to wind velocity at appropriate altitude
- Thermal
 - Vented insulation with thermal conductivity =thermal conductivity of atmosphere * 1.5
 - PCM in solid phase at beginning, then melting and heating further

EXAMPLE OF DUAL-SYSTEM SIMULATION




- Ascent module mass 70 kg
- Crossover altitude 15 km
- HAB ceiling 58 km
- Lander mass 70 kg
- Bellows: diameter 0.91 m, maximum volume 6.55 m³, mass 43 kg
- HAB: cylindrical balloon, 3.4 m diameter, volume 123 m³, mass 8.2 kg
- Buoyant gas hydrogen, 8,4 kg
- PCM water ice / water: 22.7 kg for HAB, 54 kg for tanks protection
- Probe mass at descent after aeroshell release 530 kg
- System mass at launch from surface 160 kg
- Floating mass at ceiling 86 kg
- Time on surface 1 h


SIMULATION RESULTS

140 120 Balloon volume, m3 **HAB** 40 Landing LAB Crossover Bellows altitude inflation Launch 300 250 350 Time from entry, min

Inflated volume of balloons

Melted mass fraction and PCM temperature

SUMMARY

- The dual-balloon system is the first real approach for high temperature Venus balloon missions like VISE and VESSR
- In spite of looking futuristic, only existing materials and technology used; no showstoppers so far
- Developed model can be used for trade studies
- Smaller scale precursor mission will validate the concept
- By itself, the metal bellows can fly in any altitude from near the surface to 15-20 km while tanton FN film balloons can fly from 15-20 to 60 km. Addition of superpressure balloons and polyethylene zero-pressure balloons will open all range of altitudes from surface to 75-80 km for balloon missions